class: center, middle, inverse, title-slide .title[ # Wrap-up Loose ends ] .author[ ### Maithreyi Gopalan ] .date[ ### Week 9 ] --- layout: true <script> feather.replace() </script> <div class="slides-footer"> <span> <a class = "footer-icon-link" href = "https://github.com/maithgopalan/c2-dataviz-2025/tree/main/static/slides/w9.pdf"> <i class = "footer-icon" data-feather="download"></i> </a> <a class = "footer-icon-link" href = "https://dataviz-win2025.netlify.app/slides/w9.html"> <i class = "footer-icon" data-feather="link"></i> </a> <a class = "footer-icon-link" href = "https://github.com/maithgopalan/c2-dataviz-2025"> <i class = "footer-icon" data-feather="github"></i> </a> </span> </div> --- ``` r #install.packages("Cairo") ``` # Agenda * Wrap up maps and loose ends with HTML --- # Let's get some census data ### Note To do this, you need to first register an API key with the US Census, which you can do [here](https://api.census.gov/data/key_signup.html). Then use `census_api_key("YOUR API KEY")`. Alternatively, you can specify `CENSUS_API_KEY = "YOUR API KEY"` in **.Renviron**. You can do this by using `usethis::edit_r_environ()` --- # Getting the data ``` r library(tidycensus) # Find variable code # v <- load_variables(2019, "acs5") # View(v) census_vals <- get_acs( geography = "tract", state = "OR", variables = c(med_income = "B06011_001", ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) ``` ``` ## | | | 0% | |== | 1% | |===== | 3% | |======= | 5% | |========= | 6% | |=========== | 8% | |============== | 9% | |=============== | 10% | |================= | 11% | |================== | 12% | |==================== | 14% | |======================= | 15% | |======================== | 16% | |========================== | 18% | |=========================== | 18% | |============================== | 20% | |================================ | 21% | |================================= | 22% | |=================================== | 24% | |===================================== | 25% | |======================================= | 26% | |========================================= | 28% | |========================================== | 28% | |============================================= | 30% | |============================================== | 31% | |================================================ | 32% | |================================================== | 34% | |==================================================== | 35% | |====================================================== | 36% | |======================================================= | 37% | |========================================================= | 39% | |============================================================= | 41% | |================================================================ | 43% | |=================================================================== | 45% | |====================================================================== | 47% | |======================================================================== | 49% | |========================================================================== | 49% | |============================================================================ | 51% | |=============================================================================== | 53% | |=================================================================================== | 56% | |===================================================================================== | 57% | |======================================================================================= | 59% | |========================================================================================= | 59% | |============================================================================================ | 62% | |============================================================================================== | 63% | |================================================================================================== | 66% | |===================================================================================================== | 68% | |======================================================================================================== | 70% | |========================================================================================================== | 71% | |=========================================================================================================== | 72% | |=============================================================================================================== | 74% | |================================================================================================================= | 76% | |=================================================================================================================== | 77% | |==================================================================================================================== | 78% | |======================================================================================================================== | 80% | |========================================================================================================================== | 82% | |====================================================================================================================================== | 90% | |========================================================================================================================================== | 93% | |================================================================================================================================================== | 98% | |==================================================================================================================================================== | 99% | |=====================================================================================================================================================| 100% ``` --- # Look at the data ``` r census_vals ``` ``` ## Simple feature collection with 1668 features and 5 fields (with 12 geometries empty) ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## GEOID NAME variable estimate moe geometry ## 1 41031960302 Census Tract 9603.02, Jefferson County, Oregon med_income 30061 2953 MULTIPOLYGON (((-121.8495 4... ## 2 41031960302 Census Tract 9603.02, Jefferson County, Oregon ed_attain 3011 228 MULTIPOLYGON (((-121.8495 4... ## 3 41057960100 Census Tract 9601, Tillamook County, Oregon med_income 30243 3888 MULTIPOLYGON (((-123.983 45... ## 4 41057960100 Census Tract 9601, Tillamook County, Oregon ed_attain 2707 245 MULTIPOLYGON (((-123.983 45... ## 5 41015950100 Census Tract 9501, Curry County, Oregon med_income 18989 3531 MULTIPOLYGON (((-124.5646 4... ## 6 41015950100 Census Tract 9501, Curry County, Oregon ed_attain 2337 295 MULTIPOLYGON (((-124.5646 4... ## 7 41039001902 Census Tract 19.02, Lane County, Oregon med_income 24874 2893 MULTIPOLYGON (((-122.9855 4... ## 8 41039001902 Census Tract 19.02, Lane County, Oregon ed_attain 4003 368 MULTIPOLYGON (((-122.9855 4... ## 9 41029000300 Census Tract 3, Jackson County, Oregon med_income 25000 3432 MULTIPOLYGON (((-122.9079 4... ## 10 41029000300 Census Tract 3, Jackson County, Oregon ed_attain 4331 366 MULTIPOLYGON (((-122.9079 4... ``` --- # Remove missing geometry rows * Tidycensus is (currently) bringing in some rows with missing geometries * This is not a big deal for ggplot, but is for other plotting systems * Let's remove those rows ``` r census_vals <- census_vals[!st_is_empty(census_vals$geometry), , drop = FALSE] ``` --- # Plot it ``` r library(colorspace) ggplot(census_vals) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging("Blue-Red 3", rev = TRUE) + scale_color_continuous_diverging("Blue-Red 3", rev = TRUE) ``` --- # hmm... <!-- --> --- # Try again ``` r library(colorspace) *income <- filter(census_vals, variable == "med_income") income_plot <- ggplot(income) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(income$estimate, na.rm = TRUE) ) + scale_color_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(income$estimate, na.rm = TRUE) ) + theme(legend.position = "bottom", legend.key.width = unit(2, "cm")) ``` --- ``` r income_plot ``` <!-- --> --- # Same thing for education ``` r *ed <- filter(census_vals, variable == "ed_attain") ed_plot <- ggplot(ed) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(ed$estimate, na.rm = TRUE) ) + scale_color_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(ed$estimate, na.rm = TRUE) ) + theme(legend.position = "bottom", legend.key.width = unit(2, "cm")) ``` --- ``` r ed_plot ``` <!-- --> --- # Put them together ``` r gridExtra::grid.arrange(income_plot, ed_plot, ncol = 2) ``` <!-- --> --- class: inverse-blue middle # Bivariate color scales --- background-image: url(https://timogrossenbacher.ch/wp-content/uploads/2019/04/bm-thematic-bivariate-map-with-legend-1-2.png) background-size: cover --- # How? There are a few different ways. Here's one: * Break continuous variable into categorical values * Assign each combination of values between categorical vars a color * Make sure the combinations of the colors make sense --  .footnote[gif from [Joshua Stevens](https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/)] --- # Do it Note - this will be fairly quick. I'm not expecting you to know how to do this, but I want to show you the idea and give you the breadcrumbs for the code you may need. -- ### First - move it to wider ``` r wider <- get_acs( geography = "tract", state = "OR", variables = c(med_income = "B06011_001", ed_attain = "B15003_001"), year = 2019, geometry = TRUE, * output = "wide" ) # remove missing geometry rows wider <- wider[!st_is_empty(wider$geometry), , drop = FALSE] ``` --- # Find the quartiles ``` r ed_quartiles <- quantile( wider$ed_attainE, probs = seq(0, 1, length.out = 4), na.rm = TRUE ) inc_quartiles <- quantile( wider$med_incomeE, probs = seq(0, 1, length.out = 4), na.rm = TRUE ) ed_quartiles ``` ``` ## 0% 33.33333% 66.66667% 100% ## 0.000 2715.000 3949.333 10245.000 ``` ``` r inc_quartiles ``` ``` ## 0% 33.33333% 66.66667% 100% ## 7449.00 26718.33 34375.00 82375.00 ``` --- # Create the cut variable ``` r wider <- wider %>% mutate(cat_ed = cut(ed_attainE, ed_quartiles), cat_inc = cut(med_incomeE, inc_quartiles)) wider %>% select(starts_with("cat")) ``` ``` ## Simple feature collection with 828 features and 2 fields ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## cat_ed cat_inc geometry ## 1 (2.71e+03,3.95e+03] (2.67e+04,3.44e+04] MULTIPOLYGON (((-121.8495 4... ## 2 (0,2.71e+03] (2.67e+04,3.44e+04] MULTIPOLYGON (((-123.983 45... ## 3 (0,2.71e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-124.5646 4... ## 4 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] MULTIPOLYGON (((-122.9855 4... ## 5 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] MULTIPOLYGON (((-122.9079 4... ## 6 (2.71e+03,3.95e+03] (3.44e+04,8.24e+04] MULTIPOLYGON (((-123.5016 4... ## 7 (0,2.71e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.0927 4... ## 8 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-120.8811 4... ## 9 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.5093 4... ## 10 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.8179 4... ``` --- # Set palette ``` r # First drop geo column pal <- st_drop_geometry(wider) %>% count(cat_ed, cat_inc) %>% arrange(cat_ed, cat_inc) %>% drop_na(cat_ed, cat_inc) %>% mutate(pal = c("#F3F3F3", "#C3F1D5", "#8BE3AF", "#EBC5DD", "#C3C5D5", "#8BC5AF", "#E7A3D1", "#C3A3D1", "#8BA3AE")) pal ``` ``` ## cat_ed cat_inc n pal ## 1 (0,2.71e+03] (7.45e+03,2.67e+04] 116 #F3F3F3 ## 2 (0,2.71e+03] (2.67e+04,3.44e+04] 85 #C3F1D5 ## 3 (0,2.71e+03] (3.44e+04,8.24e+04] 70 #8BE3AF ## 4 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] 87 #EBC5DD ## 5 (2.71e+03,3.95e+03] (2.67e+04,3.44e+04] 97 #C3C5D5 ## 6 (2.71e+03,3.95e+03] (3.44e+04,8.24e+04] 92 #8BC5AF ## 7 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] 71 #E7A3D1 ## 8 (3.95e+03,1.02e+04] (2.67e+04,3.44e+04] 92 #C3A3D1 ## 9 (3.95e+03,1.02e+04] (3.44e+04,8.24e+04] 113 #8BA3AE ``` --- # Join & plot ``` r bivar_map <- left_join(wider, pal) %>% ggplot() + geom_sf(aes(fill = pal, color = pal)) + guides(fill = "none", color = "none") + scale_fill_identity() + scale_color_identity() ``` --- class: center middle <!-- --> --- # Add in legend ### First create it ``` r leg <- ggplot(pal, aes(cat_ed, cat_inc)) + geom_tile(aes(fill = pal)) + scale_fill_identity() + coord_fixed() + labs(x = expression("Higher education" %->% ""), y = expression("Higher income" %->% "")) + theme(axis.text = element_blank(), axis.title = element_text(size = 12)) leg ``` <!-- --> --- # Put together ``` r library(cowplot) ggdraw() + draw_plot(bivar_map + theme_void(), 0.1, 0.1, 1, 1) + draw_plot(leg, -0.05, 0, 0.3, 0.3) ``` Coordinates are mostly guess/check depending on aspect ratio --- <!-- --> --- class: inverse-orange middle # {tmap} ### Back to just one variable I mostly use `ggplot()`, but the **{tmap}** package is really powerful and the syntax is pretty straightforward, so let's have a quick overview. --- # Education map with [{tmap}](https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html). ``` r library(tmap) tm_shape(wider) + tm_polygons("ed_attainE") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Facet ``` r tm_shape(census_vals) + tm_polygons("estimate") + tm_facets("variable") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Change colors ``` r tm_shape(wider) + tm_polygons("ed_attainE", * palette = "magma", * border.col = "gray90", * lwd = 0.1) + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Continuous legend ``` r tm_shape(wider) + tm_polygons("ed_attainE", style = "cont") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Add text * First, let's get data at the county level, instead of census tract level ``` r cnty <- get_acs( geography = "county", state = "OR", variables = c(ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) ``` ``` ## | | | 0% | |=============== | 10% | |================ | 11% | |=================== | 13% | |==================== | 13% | |==================== | 14% | |===================== | 14% | |====================== | 14% | |====================== | 15% | |======================= | 16% | |======================== | 16% | |========================= | 17% | |========================== | 17% | |========================== | 18% | |=========================== | 18% | |============================ | 19% | |============================= | 19% | |============================== | 20% | |=============================== | 21% | |================================ | 21% | |================================ | 22% | |================================= | 22% | |=================================== | 23% | |=================================== | 24% | |==================================== | 24% | |===================================== | 25% | |====================================== | 25% | |====================================== | 26% | |======================================= | 26% | |======================================= | 27% | |======================================== | 27% | |========================================= | 27% | |========================================= | 28% | |========================================== | 28% | |=========================================== | 29% | |============================================ | 29% | |============================================ | 30% | |============================================= | 30% | |============================================== | 31% | |=============================================== | 31% | |=============================================== | 32% | |================================================ | 32% | |================================================= | 33% | |================================================== | 33% | |================================================== | 34% | |=================================================== | 34% | |==================================================== | 35% | |===================================================== | 36% | |====================================================== | 36% | |====================================================== | 37% | |======================================================= | 37% | |======================================================== | 37% | |======================================================== | 38% | |========================================================= | 38% | |========================================================== | 39% | |=========================================================== | 39% | |=========================================================== | 40% | |============================================================ | 40% | |============================================================= | 41% | |============================================================== | 41% | |============================================================== | 42% | |=============================================================== | 42% | |================================================================ | 43% | |================================================================= | 44% | |================================================================== | 44% | |=================================================================== | 45% | |==================================================================== | 46% | |===================================================================== | 46% | |===================================================================== | 47% | |====================================================================== | 47% | |======================================================================= | 47% | |======================================================================= | 48% | |======================================================================== | 48% | |======================================================================== | 49% | |========================================================================= | 49% | |========================================================================== | 49% | |========================================================================== | 50% | |=========================================================================== | 50% | |=========================================================================== | 51% | |============================================================================ | 51% | |============================================================================= | 52% | |============================================================================== | 52% | |============================================================================== | 53% | |=============================================================================== | 53% | |================================================================================ | 53% | |================================================================================ | 54% | |================================================================================= | 54% | |================================================================================= | 55% | |================================================================================== | 55% | |=================================================================================== | 56% | |==================================================================================== | 56% | |===================================================================================== | 57% | |====================================================================================== | 58% | |======================================================================================= | 58% | |======================================================================================= | 59% | |======================================================================================== | 59% | |========================================================================================= | 59% | |========================================================================================= | 60% | |========================================================================================== | 60% | |=========================================================================================== | 61% | |============================================================================================ | 61% | |============================================================================================ | 62% | |============================================================================================= | 62% | |============================================================================================= | 63% | |============================================================================================== | 63% | |=============================================================================================== | 63% | |=============================================================================================== | 64% | |================================================================================================ | 64% | |================================================================================================ | 65% | |================================================================================================= | 65% | |================================================================================================== | 66% | |=================================================================================================== | 66% | |=================================================================================================== | 67% | |==================================================================================================== | 67% | |===================================================================================================== | 68% | |====================================================================================================== | 68% | |====================================================================================================== | 69% | |======================================================================================================= | 69% | |======================================================================================================== | 70% | |========================================================================================================= | 70% | |========================================================================================================= | 71% | |========================================================================================================== | 71% | |=========================================================================================================== | 72% | |============================================================================================================ | 72% | |============================================================================================================ | 73% | |============================================================================================================= | 73% | |============================================================================================================== | 73% | |============================================================================================================== | 74% | |=============================================================================================================== | 74% | |=============================================================================================================== | 75% | |================================================================================================================ | 75% | |================================================================================================================= | 76% | |================================================================================================================== | 76% | |================================================================================================================== | 77% | |=================================================================================================================== | 77% | |==================================================================================================================== | 78% | |===================================================================================================================== | 78% | |===================================================================================================================== | 79% | |====================================================================================================================== | 79% | |======================================================================================================================= | 80% | |======================================================================================================================== | 80% | |========================================================================================================================= | 81% | |========================================================================================================================== | 82% | |=========================================================================================================================== | 82% | |=========================================================================================================================== | 83% | |============================================================================================================================ | 83% | |============================================================================================================================= | 84% | |============================================================================================================================== | 84% | |============================================================================================================================== | 85% | |=============================================================================================================================== | 85% | |================================================================================================================================ | 86% | |================================================================================================================================= | 87% | |================================================================================================================================== | 87% | |=================================================================================================================================== | 88% | |==================================================================================================================================== | 88% | |==================================================================================================================================== | 89% | |===================================================================================================================================== | 89% | |====================================================================================================================================== | 90% | |======================================================================================================================================= | 90% | |======================================================================================================================================= | 91% | |======================================================================================================================================== | 91% | |======================================================================================================================================== | 92% | |========================================================================================================================================= | 92% | |========================================================================================================================================== | 92% | |========================================================================================================================================== | 93% | |=========================================================================================================================================== | 93% | |=========================================================================================================================================== | 94% | |============================================================================================================================================ | 94% | |============================================================================================================================================= | 94% | |============================================================================================================================================= | 95% | |============================================================================================================================================== | 95% | |============================================================================================================================================== | 96% | |=============================================================================================================================================== | 96% | |================================================================================================================================================ | 96% | |================================================================================================================================================ | 97% | |================================================================================================================================================= | 97% | |================================================================================================================================================= | 98% | |================================================================================================================================================== | 98% | |=================================================================================================================================================== | 98% | |=================================================================================================================================================== | 99% | |==================================================================================================================================================== | 99% | |=====================================================================================================================================================| 100% ``` --- ``` r cnty ``` ``` ## Simple feature collection with 36 features and 5 fields ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## GEOID NAME variable estimate moe geometry ## 1 41017 Deschutes County, Oregon ed_attain 135615 192 MULTIPOLYGON (((-122.0019 4... ## 2 41003 Benton County, Oregon ed_attain 55359 143 MULTIPOLYGON (((-123.8167 4... ## 3 41015 Curry County, Oregon ed_attain 18304 139 MULTIPOLYGON (((-124.3239 4... ## 4 41061 Union County, Oregon ed_attain 17539 78 MULTIPOLYGON (((-118.6978 4... ## 5 41055 Sherman County, Oregon ed_attain 1251 84 MULTIPOLYGON (((-121.0312 4... ## 6 41051 Multnomah County, Oregon ed_attain 587290 134 MULTIPOLYGON (((-122.9292 4... ## 7 41007 Clatsop County, Oregon ed_attain 28475 165 MULTIPOLYGON (((-123.5989 4... ## 8 41033 Josephine County, Oregon ed_attain 63802 148 MULTIPOLYGON (((-124.042 42... ## 9 41031 Jefferson County, Oregon ed_attain 16197 24 MULTIPOLYGON (((-121.8495 4... ## 10 41039 Lane County, Oregon ed_attain 256373 147 MULTIPOLYGON (((-124.1503 4... ``` --- # Estimate polygon centroid ``` r centroids <- st_centroid(cnty) ``` -- ### Extract just county name ``` r centroids <- centroids %>% mutate(county = str_replace_all(NAME, " County, Oregon", "")) ``` --- # Plot ``` r tm_shape(cnty) + tm_polygons("estimate", style = "cont") + tm_shape(centroids) + tm_text("county", size = 0.5) + tm_layout(legend.outside = TRUE) ``` <!-- --> -- Doesn't work for me on the slides. Not sure why, but should work for you locally. --- # Add raster elevation data ``` r states <- get_acs( "state", variables = c(ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) or <- filter(states, NAME == "Oregon") # convert to spatial data frame #sp <- as(or, "Spatial") # use elevatr library to pull data library(elevatr) or_elev <- get_elev_raster(or, z = 9) lane_elev <- get_elev_raster(or, z = 9) ``` --- # Plot ``` r tm_shape(or_elev) + tm_raster(midpoint = NA, style = "cont") + tm_layout(legend.outside = TRUE) + tm_shape(cnty) + tm_borders(col = "gray60") ``` <!-- --> --- # Add custom palette ``` r tm_shape(or_elev) + tm_raster(midpoint = NA, style = "cont", palette = c("#E2FCFF", "#83A9CE", "#485C6E", "#181818", "#5C5B3E", "#AAA971", "#FCFCD3", "#ffffff")) + tm_layout(legend.outside = TRUE) + tm_shape(cnty) + tm_borders(col = "gray60") ``` --- class: full-size-fig <!-- --> --- # You can do some amazing things! <!-- --> --- # Create interactive maps Just change run `tmap_mode("view)` then run the same code as before ``` r tmap_mode("view") tm_shape(cnty) + tm_polygons("estimate") + tm_shape(centroids) + tm_text("county", size = 0.5) ``` ---
--- # mapview * Really quick easy interactive maps ``` r library(mapview) mapview(cnty) ```
--- ``` r mapview(cnty, zcol = "estimate") ```
--- ``` r mapview(cnty, zcol = "estimate", popup = leafpop::popupTable(cnty, zcol = c("NAME", "estimate"))) ```
--- class: inverse-blue center middle # A few other things of note --- # statebins ``` r library(statebins) statebins(states, state_col = "NAME", value_col = "estimate") + theme_void() ``` <!-- --> --- # Cartograms ``` r library(cartogram) or_county_pop <- get_acs( geography = "county", state = "OR", variables = "B01001E_001", year = 2018, geometry = TRUE ) ``` ``` ## | | | 0% | |================ | 11% | |================== | 12% | |===================== | 14% | |====================== | 14% | |======================== | 16% | |========================= | 17% | |========================== | 17% | |============================ | 19% | |============================== | 20% | |=============================== | 21% | |================================ | 21% | |================================= | 22% | |=================================== | 23% | |=================================================== | 34% | |============================================================= | 41% | |============================================================================= | 51% | |============================================================================= | 52% | |============================================================================== | 52% | |============================================================================== | 53% | |=============================================================================== | 53% | |================================================================================ | 54% | |================================================================================== | 55% | |=================================================================================== | 56% | |==================================================================================== | 56% | |==================================================================================== | 57% | |====================================================================================== | 57% | |====================================================================================== | 58% | |======================================================================================= | 58% | |======================================================================================= | 59% | |======================================================================================== | 59% | |========================================================================================= | 60% | |========================================================================================== | 60% | |========================================================================================== | 61% | |=========================================================================================== | 61% | |============================================================================================ | 61% | |============================================================================================ | 62% | |============================================================================================= | 62% | |============================================================================================= | 63% | |============================================================================================== | 63% | |=============================================================================================== | 64% | |================================================================================================ | 64% | |================================================================================================= | 65% | |================================================================================================== | 66% | |=================================================================================================== | 66% | |==================================================================================================== | 67% | |===================================================================================================== | 68% | |====================================================================================================== | 68% | |====================================================================================================== | 69% | |======================================================================================================= | 69% | |======================================================================================================== | 70% | |========================================================================================================= | 71% | |========================================================================================================== | 71% | |================================================================================================================== | 76% | |================================================================================================================================== | 87% | |====================================================================================================================================== | 90% | |=====================================================================================================================================================| 100% ``` ``` r # Set projection or_county_pop <- st_transform(or_county_pop, crs = 2992) # found the CRS here: https://www.oregon.gov/geo/pages/projections.aspx carto_counties <- cartogram_cont(or_county_pop, "estimate") ``` --- # Compare .pull-left[ ``` r ggplot(or_county_pop) + geom_sf(fill = "#BCD8EB") ``` <!-- --> ] .pull-right[ ``` r ggplot(carto_counties) + geom_sf(fill = "#D5FFFA") ``` <!-- --> ] --- # State ``` r state_pop <- get_acs( geography = "state", variables = "B00001_001", year = 2018, geometry = TRUE ) # Set projection state_pop <- st_transform(state_pop, crs = 2163) # found the CRS here: https://epsg.io/transform#s_srs=3969&t_srs=4326 carto_states <- cartogram_cont(state_pop, "estimate") ``` --- # Cartogram of USA by population ``` r ggplot(carto_states) + geom_sf() ``` <!-- --> --- # Last note You may or may not like cartograms. -- Just be careful not to lie with maps.  --- # Loose ends with HTML/Websites + Can I use Quatro blog instead of a Distill blog? + Best way to learn more about websites - Fork, clone, mess on your own + Github pages deployment is the easiest and a good entry point + But you can use others like Netlify and such for more complicated sites + Troubleshooting and persistence through that is the key for any skill but especially so for programming! + So, keep at it! --- class: inverse-blue # Presentations for next week - let's quickly look at rubric again! --- # Presentations + Each person/group gets 10 minutes + Followed by Q & A and a quick 2-minute discussion of plans to finalize and what finishing touches you will add!