class: center, middle, inverse, title-slide .title[ # Tables & Geographic data ] .author[ ### Maithreyi Gopalan ] .date[ ### Week 8 ] --- layout: true <script> feather.replace() </script> <div class="slides-footer"> <span> <a class = "footer-icon-link" href = "https://github.com/maithgopalan/c2-dataviz-2025/tree/main/static/slides/w8.pdf"> <i class = "footer-icon" data-feather="download"></i> </a> <a class = "footer-icon-link" href = "https://dataviz-win2025.netlify.app/slides/w8.html"> <i class = "footer-icon" data-feather="link"></i> </a> <a class = "footer-icon-link" href = "https://github.com/maithgopalan/c2-dataviz-2025"> <i class = "footer-icon" data-feather="github"></i> </a> </span> </div> --- ``` r #install.packages("Cairo") ``` # Agenda * Wrap up websites * Tables + [{gt}](https://gt.rstudio.com/) + [{kableExtra}](https://haozhu233.github.io/kableExtra/) (quickly) + [reactable](https://glin.github.io/reactable/index.html) * Geographic data + Vector/raster data + Producing basic maps + Geospatial ecosystem --- # Learning objectives: Tables * Be comfortable with the basics of `gt` + create a table + format columns + create spanner heads + etc. --- # Learning objectives: geo * Know the difference between vector and raster data * Be able to produce basic maps using a variety of tools * Be able to obtain different types of geographic data from a few different places * Be able to produce basic interactive maps * Understand the basics of the R geospatial ecosystem --- class: inverse-red middle # Wrap up websites --- class: inverse-blue middle # Tables <style type="text/css"> table { font-size: 1rem; } .rt-table { font-size: 0.9rem; } .rt-pagination { font-size: 0.9rem; } .rt-search { font-size: 0.9rem; } </style> --- class: inverse-green background-image:url(https://github.com/rstudio/gt/raw/master/man/figures/logo.svg?sanitize=TRUE) background-size: contain --- # Overview * Pipe-oriented * Beautiful tables easy * Spanner heads/grouping used to be a total pain - not so anymore * Renders to HTML/PDF without even thinking about it -- Probably my favorite package for creating static tables, although [**kableExtra**](https://haozhu233.github.io/kableExtra/) is great too. My experience is that fewer people are generally familiar with [**gt**](https://gt.rstudio.com), which is why I cover it here. --- # Install ``` r #install.packages("gt") # or remotes::install_github("rstudio/gt") ``` Please follow along
−
+
01
:
00
--- # The hard part * Getting your data in the format you want a table in * Utilize your `pivot_*` skills regularly ``` r library(fivethirtyeight) flying ``` ``` ## # A tibble: 1,040 × 27 ## respondent_id gender age height children_under_18 household_income ## <dbl> <chr> <ord> <ord> <lgl> <ord> ## 1 3436139758 <NA> <NA> <NA> NA <NA> ## 2 3434278696 Male 30-44 "6'3\"" TRUE <NA> ## 3 3434275578 Male 30-44 "5'8\"" FALSE $100,000 - $149,999 ## 4 3434268208 Male 30-44 "5'11\"" FALSE $0 - $24,999 ## 5 3434250245 Male 30-44 "5'7\"" FALSE $50,000 - $99,999 ## 6 3434245875 Male 30-44 "5'9\"" TRUE $25,000 - $49,999 ## 7 3434235351 Male 30-44 "6'2\"" TRUE <NA> ## 8 3434218031 Male 30-44 "6'0\"" TRUE $0 - $24,999 ## 9 3434213681 <NA> <NA> "6'0\"" TRUE <NA> ## 10 3434172894 Male 30-44 "5'6\"" FALSE $0 - $24,999 ## # ℹ 1,030 more rows ## # ℹ 21 more variables: education <ord>, location <chr>, frequency <ord>, ## # recline_frequency <ord>, recline_obligation <lgl>, recline_rude <ord>, ## # recline_eliminate <lgl>, switch_seats_friends <ord>, ## # switch_seats_family <ord>, wake_up_bathroom <ord>, wake_up_walk <ord>, ## # baby <ord>, unruly_child <ord>, two_arm_rests <chr>, ## # middle_arm_rest <chr>, shade <chr>, unsold_seat <ord>, … ``` --- ``` r flying %>% count(gender, age, recline_frequency) ``` ``` ## # A tibble: 53 × 4 ## gender age recline_frequency n ## <chr> <ord> <ord> <int> ## 1 Female 18-29 Never 24 ## 2 Female 18-29 Once in a while 36 ## 3 Female 18-29 About half the time 10 ## 4 Female 18-29 Usually 13 ## 5 Female 18-29 Always 10 ## 6 Female 18-29 <NA> 19 ## 7 Female 30-44 Never 21 ## 8 Female 30-44 Once in a while 25 ## 9 Female 30-44 About half the time 22 ## 10 Female 30-44 Usually 22 ## # ℹ 43 more rows ``` --- ``` r smry <- flying %>% count(gender, age, recline_frequency) %>% drop_na(age,recline_frequency) %>% pivot_wider( names_from = "age", values_from = "n" ) smry ``` ``` ## # A tibble: 10 × 6 ## gender recline_frequency `18-29` `30-44` `45-60` `> 60` ## <chr> <ord> <int> <int> <int> <int> ## 1 Female Never 24 21 19 23 ## 2 Female Once in a while 36 25 30 36 ## 3 Female About half the time 10 22 18 17 ## 4 Female Usually 13 22 26 28 ## 5 Female Always 10 21 29 12 ## 6 Male Never 24 17 20 18 ## 7 Male Once in a while 19 39 40 29 ## 8 Male About half the time 11 11 16 11 ## 9 Male Usually 14 30 15 27 ## 10 Male Always 11 14 21 14 ``` --- # Turn into table ``` r library(gt) smry %>% gt() ``` -- ## Disclaimer: these all look slightly different on the slides The way they look for you locally is how they will render in standard R Markdown files --- class: middle
gender
recline_frequency
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Female
Once in a while
36
25
30
36
Female
About half the time
10
22
18
17
Female
Usually
13
22
26
28
Female
Always
10
21
29
12
Male
Never
24
17
20
18
Male
Once in a while
19
39
40
29
Male
About half the time
11
11
16
11
Male
Usually
14
30
15
27
Male
Always
11
14
21
14
--- ## Add gender as a grouping variable ``` r smry %>% * group_by(gender) %>% gt() ``` --- class: middle
recline_frequency
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Once in a while
36
25
30
36
About half the time
10
22
18
17
Usually
13
22
26
28
Always
10
21
29
12
Male
Never
24
17
20
18
Once in a while
19
39
40
29
About half the time
11
11
16
11
Usually
14
30
15
27
Always
11
14
21
14
-- This is an example of a table that looks better with the default CSS --- # Add a spanner head ``` r smry %>% group_by(gender) %>% gt() %>% * tab_spanner( * label = "Age Range", * columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) * ) ``` --- class: middle
recline_frequency
Age Range
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Once in a while
36
25
30
36
About half the time
10
22
18
17
Usually
13
22
26
28
Always
10
21
29
12
Male
Never
24
17
20
18
Once in a while
19
39
40
29
About half the time
11
11
16
11
Usually
14
30
15
27
Always
11
14
21
14
--- # Change column names ``` r smry %>% group_by(gender) %>% gt() %>% tab_spanner( label = "Age Range", columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) ) %>% * cols_label(recline_frequency = "Recline") ``` --- class: middle
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Once in a while
36
25
30
36
About half the time
10
22
18
17
Usually
13
22
26
28
Always
10
21
29
12
Male
Never
24
17
20
18
Once in a while
19
39
40
29
About half the time
11
11
16
11
Usually
14
30
15
27
Always
11
14
21
14
--- # Align columns ``` r smry %>% group_by(gender) %>% gt() %>% tab_spanner( label = "Age Range", columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) ) %>% cols_label(recline_frequency = "Recline") %>% * cols_align(align = "left", * columns = vars(recline_frequency)) ``` --- class: middle
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Once in a while
36
25
30
36
About half the time
10
22
18
17
Usually
13
22
26
28
Always
10
21
29
12
Male
Never
24
17
20
18
Once in a while
19
39
40
29
About half the time
11
11
16
11
Usually
14
30
15
27
Always
11
14
21
14
--- # Add a title ``` r smry %>% group_by(gender) %>% gt() %>% tab_spanner( label = "Age Range", columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) ) %>% cols_label(recline_frequency = "Recline") %>% cols_align(align = "left", columns = vars(recline_frequency)) %>% * tab_header( * title = "Airline Passengers", * subtitle = "Leg space is limited, what do you do?" * ) ``` --- class: middle
Airline Passengers
Leg space is limited, what do you do?
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24
21
19
23
Once in a while
36
25
30
36
About half the time
10
22
18
17
Usually
13
22
26
28
Always
10
21
29
12
Male
Never
24
17
20
18
Once in a while
19
39
40
29
About half the time
11
11
16
11
Usually
14
30
15
27
Always
11
14
21
14
--- # Format columns ``` r smry %>% * mutate(across(c(`18-29`, `30-44`, `45-60`, `> 60`), * ~.x/100)) %>% group_by(gender) %>% gt() %>% tab_spanner( label = "Age Range", columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) ) %>% * fmt_percent( * vars(`18-29`, `30-44`, `45-60`, `> 60`), * decimals = 0 * ) %>% cols_label(recline_frequency = "Recline") %>% cols_align(align = "left", columns = vars(recline_frequency)) %>% tab_header( title = "Airline Passengers", subtitle = "Leg space is limited, what do you do?" ) ``` --- class: middle
Airline Passengers
Leg space is limited, what do you do?
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24%
21%
19%
23%
Once in a while
36%
25%
30%
36%
About half the time
10%
22%
18%
17%
Usually
13%
22%
26%
28%
Always
10%
21%
29%
12%
Male
Never
24%
17%
20%
18%
Once in a while
19%
39%
40%
29%
About half the time
11%
11%
16%
11%
Usually
14%
30%
15%
27%
Always
11%
14%
21%
14%
--- # Add a source note ``` r smry %>% mutate(across(c(`18-29`, `30-44`, `45-60`, `> 60`), ~.x/100)) %>% group_by(gender) %>% gt() %>% tab_spanner( label = "Age Range", columns = vars(`18-29`, `30-44`, `45-60`, `> 60`) ) %>% fmt_percent( vars(`18-29`, `30-44`, `45-60`, `> 60`), decimals = 0 ) %>% cols_label(recline_frequency = "Recline") %>% cols_align(align = "left", columns = vars(recline_frequency)) %>% tab_header( title = "Airline Passengers", subtitle = "Leg space is limited, what do you do?" ) %>% * tab_source_note( * source_note = md("Data from [fivethirtyeight](https://fivethirtyeight.com/features/airplane-etiquette-recline-seat/)") * ) ``` --- class: middle
Airline Passengers
Leg space is limited, what do you do?
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24%
21%
19%
23%
Once in a while
36%
25%
30%
36%
About half the time
10%
22%
18%
17%
Usually
13%
22%
26%
28%
Always
10%
21%
29%
12%
Male
Never
24%
17%
20%
18%
Once in a while
19%
39%
40%
29%
About half the time
11%
11%
16%
11%
Usually
14%
30%
15%
27%
Always
11%
14%
21%
14%
Data from
fivethirtyeight
--- # Color cells ``` r ... %>% data_color( vars(`18-29`, `30-44`, `45-60`, `> 60`), colors = scales::col_numeric( palette = c("#FFFFFF", "#FF0000"), domain = NULL ) ) %>% ... ``` --- class: middle
Airline Passengers
Leg space is limited, what do you do?
Recline
Age Range
18-29
30-44
45-60
> 60
Female
Never
24%
21%
19%
23%
Once in a while
36%
25%
30%
36%
About half the time
10%
22%
18%
17%
Usually
13%
22%
26%
28%
Always
10%
21%
29%
12%
Male
Never
24%
17%
20%
18%
Once in a while
19%
39%
40%
29%
About half the time
11%
11%
16%
11%
Usually
14%
30%
15%
27%
Always
11%
14%
21%
14%
Data from
fivethirtyeight
--- # What else? * Lots more it can do, see the [website](https://gt.rstudio.com) -- [Thomas Mock](https://twitter.com/thomas_mock) does a lot of great work with tables and often has tutorials showing your how to go further (e.g., see [here](https://themockup.blog/posts/2020-10-31-embedding-custom-features-in-gt-tables/) and [here](https://themockup.blog/posts/2020-09-26-functions-and-themes-for-gt-tables/) and [here](https://themockup.blog/posts/2020-09-04-10-table-rules-in-r/)). --- class: inverse-red center middle # A few other table options --- # kableExtra ### A few quick examples Make sure to specify `results = "asis"` in your chunk options. .pull-left[ ``` r library(knitr) library(kableExtra) dt <- mtcars[1:5, 1:6] kable(dt) %>% kable_styling("striped") %>% column_spec(5:7, bold = TRUE) ``` ] .pull-right[ <table class="table table-striped" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> mpg </th> <th style="text-align:right;"> cyl </th> <th style="text-align:right;"> disp </th> <th style="text-align:right;"> hp </th> <th style="text-align:right;"> drat </th> <th style="text-align:right;"> wt </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Mazda RX4 </td> <td style="text-align:right;"> 21.0 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 160 </td> <td style="text-align:right;font-weight: bold;"> 110 </td> <td style="text-align:right;font-weight: bold;"> 3.90 </td> <td style="text-align:right;font-weight: bold;"> 2.620 </td> </tr> <tr> <td style="text-align:left;"> Mazda RX4 Wag </td> <td style="text-align:right;"> 21.0 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 160 </td> <td style="text-align:right;font-weight: bold;"> 110 </td> <td style="text-align:right;font-weight: bold;"> 3.90 </td> <td style="text-align:right;font-weight: bold;"> 2.875 </td> </tr> <tr> <td style="text-align:left;"> Datsun 710 </td> <td style="text-align:right;"> 22.8 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 108 </td> <td style="text-align:right;font-weight: bold;"> 93 </td> <td style="text-align:right;font-weight: bold;"> 3.85 </td> <td style="text-align:right;font-weight: bold;"> 2.320 </td> </tr> <tr> <td style="text-align:left;"> Hornet 4 Drive </td> <td style="text-align:right;"> 21.4 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 258 </td> <td style="text-align:right;font-weight: bold;"> 110 </td> <td style="text-align:right;font-weight: bold;"> 3.08 </td> <td style="text-align:right;font-weight: bold;"> 3.215 </td> </tr> <tr> <td style="text-align:left;"> Hornet Sportabout </td> <td style="text-align:right;"> 18.7 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 360 </td> <td style="text-align:right;font-weight: bold;"> 175 </td> <td style="text-align:right;font-weight: bold;"> 3.15 </td> <td style="text-align:right;font-weight: bold;"> 3.440 </td> </tr> </tbody> </table> ] --- ``` r kable(dt) %>% kable_styling("striped") %>% column_spec(5:7, bold = TRUE) %>% row_spec(c(2, 4), bold = TRUE, color = "#EFF3F7", background = "#71B0DE") ``` <table class="table table-striped" style="margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> mpg </th> <th style="text-align:right;"> cyl </th> <th style="text-align:right;"> disp </th> <th style="text-align:right;"> hp </th> <th style="text-align:right;"> drat </th> <th style="text-align:right;"> wt </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> Mazda RX4 </td> <td style="text-align:right;"> 21.0 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 160 </td> <td style="text-align:right;font-weight: bold;"> 110 </td> <td style="text-align:right;font-weight: bold;"> 3.90 </td> <td style="text-align:right;font-weight: bold;"> 2.620 </td> </tr> <tr> <td style="text-align:left;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> Mazda RX4 Wag </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 21.0 </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 6 </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 160 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 110 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 3.90 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 2.875 </td> </tr> <tr> <td style="text-align:left;"> Datsun 710 </td> <td style="text-align:right;"> 22.8 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 108 </td> <td style="text-align:right;font-weight: bold;"> 93 </td> <td style="text-align:right;font-weight: bold;"> 3.85 </td> <td style="text-align:right;font-weight: bold;"> 2.320 </td> </tr> <tr> <td style="text-align:left;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> Hornet 4 Drive </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 21.4 </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 6 </td> <td style="text-align:right;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 258 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 110 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 3.08 </td> <td style="text-align:right;font-weight: bold;font-weight: bold;color: rgba(239, 243, 247, 255) !important;background-color: rgba(113, 176, 222, 255) !important;"> 3.215 </td> </tr> <tr> <td style="text-align:left;"> Hornet Sportabout </td> <td style="text-align:right;"> 18.7 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 360 </td> <td style="text-align:right;font-weight: bold;"> 175 </td> <td style="text-align:right;font-weight: bold;"> 3.15 </td> <td style="text-align:right;font-weight: bold;"> 3.440 </td> </tr> </tbody> </table> --- ``` r kable(dt) %>% kable_styling("striped", full_width = FALSE) %>% pack_rows( "Group 1", 1, 3, label_row_css = "background-color: #666; color: #fff;" ) %>% pack_rows( "Group 2", 4, 5, label_row_css = "background-color: #666; color: #fff;" ) ``` <table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:right;"> mpg </th> <th style="text-align:right;"> cyl </th> <th style="text-align:right;"> disp </th> <th style="text-align:right;"> hp </th> <th style="text-align:right;"> drat </th> <th style="text-align:right;"> wt </th> </tr> </thead> <tbody> <tr grouplength="3"><td colspan="7" style="background-color: #666; color: #fff;"><strong>Group 1</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Mazda RX4 </td> <td style="text-align:right;"> 21.0 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 160 </td> <td style="text-align:right;"> 110 </td> <td style="text-align:right;"> 3.90 </td> <td style="text-align:right;"> 2.620 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Mazda RX4 Wag </td> <td style="text-align:right;"> 21.0 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 160 </td> <td style="text-align:right;"> 110 </td> <td style="text-align:right;"> 3.90 </td> <td style="text-align:right;"> 2.875 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Datsun 710 </td> <td style="text-align:right;"> 22.8 </td> <td style="text-align:right;"> 4 </td> <td style="text-align:right;"> 108 </td> <td style="text-align:right;"> 93 </td> <td style="text-align:right;"> 3.85 </td> <td style="text-align:right;"> 2.320 </td> </tr> <tr grouplength="2"><td colspan="7" style="background-color: #666; color: #fff;"><strong>Group 2</strong></td></tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Hornet 4 Drive </td> <td style="text-align:right;"> 21.4 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 258 </td> <td style="text-align:right;"> 110 </td> <td style="text-align:right;"> 3.08 </td> <td style="text-align:right;"> 3.215 </td> </tr> <tr> <td style="text-align:left;padding-left: 2em;" indentlevel="1"> Hornet Sportabout </td> <td style="text-align:right;"> 18.7 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 360 </td> <td style="text-align:right;"> 175 </td> <td style="text-align:right;"> 3.15 </td> <td style="text-align:right;"> 3.440 </td> </tr> </tbody> </table> --- # KableExtra wrapup Many other options, please see the documentation. Works well for PDF and HTML. -- What about Microsoft Word? --- # flextable [](https://davidgohel.github.io/flextable/index.html) --- # Many others * [huxtable](https://hughjonesd.github.io/huxtable/) * [formattable](https://renkun-ken.github.io/formattable/) * [DT](https://rstudio.github.io/DT/) (my former favorite for [shiny](https://shiny.rstudio.com)) * [rhandsontable](https://jrowen.github.io/rhandsontable/) -- ### Particularly helpful for modeling * [stargazer](https://www.jakeruss.com/cheatsheets/stargazer/) * [pixiedust](https://github.com/nutterb/pixiedust) * [modelsummary](https://github.com/vincentarelbundock/modelsummary) -- ### For descriptives * [gtsummary](https://github.com/ddsjoberg/gtsummary) --- class: inverse-red middle # reactable My favorite for interactive tables --- [](https://glin.github.io/reactable/index.html) Works great with [**shiny**](https://shiny.rstudio.com) too --- # Penguins data ``` r library(palmerpenguins) library(reactable) reactable(penguins) ```
--- # Rename columns ``` r penguins %>% reactable( columns = list( bill_length_mm = colDef(name = "Bill Length (mm)"), bill_depth_mm = colDef(name = "Bill Depth (mm)") ) ) ``` ---
--- # Or use a function ``` r library(stringr) penguins %>% reactable( defaultColDef = colDef( header = function(x) str_to_title(gsub("_", " ", x)) ) ) ``` ---
--- # Add filter ``` r reactable(penguins, filterable = TRUE) ```
--- # Searchable ``` r reactable(penguins, searchable = TRUE) ```
--- # Pagination ``` r reactable(penguins, defaultPageSize = 3) ```
--- # Page jump ``` r reactable(penguins, defaultPageSize = 3, paginationType = "jump") ```
--- # Grouping ``` r reactable(penguins, groupBy = c("species", "island")) ```
--- # Aggregate ``` r penguins %>% reactable( groupBy = c("species", "island"), columns = list( bill_length_mm = colDef(aggregate = "mean", format = colFormat(digits = 2)) ) ) ```
--- # Sparklines ``` r library(sparkline) table_data <- penguins %>% group_by(species) %>% summarize(bill_length = list(bill_length_mm)) %>% mutate(boxplot = NA, sparkline = NA) table_data ``` ``` ## # A tibble: 3 × 4 ## species bill_length boxplot sparkline ## <fct> <list> <lgl> <lgl> ## 1 Adelie <dbl [152]> NA NA ## 2 Chinstrap <dbl [68]> NA NA ## 3 Gentoo <dbl [124]> NA NA ``` --- ``` r table_data %>% reactable( columns = list( bill_length = colDef(cell = function(value) { sparkline(value, type = "bar") }), boxplot = colDef(cell = function(value, index) { sparkline(table_data$bill_length[[index]], type = "box") }), sparkline = colDef(cell = function(value, index) { sparkline(table_data$bill_length[[index]]) }) ) ) ``` ---
--- # Lots more! Idea of today is not to teach you everything, but to give you an idea of what's possible. Check out the [documentation]() for more information. -- Also check out [{reactablefmtr}](https://kcuilla.github.io/reactablefmtr/index.html) for easier use and amazing extensions! --- class:inverse-blue center middle # Geographic data --- # First - a disclaimer * We're *only* talking about visualizing geographic data, not analyzing geographic data -- * Even so, there's SO MUCH we won't get to -- * Today is an intro - lots more you can do, hopefully you'll feel comfortable with the basics --- # Learning objectives * Know the difference between vector and raster data * Be able to produce basic maps * Be able to obtain different types of geographic data from a few different places * Be able to produce basic interactive maps * Understand the basics of the R geospatial ecosystem -- ### Today is partially about content and partially about exposure --- # Where to learn more ### [Geocomputation with R](https://geocompr.robinlovelace.net)  --- # Zev Ross 2-day Workshop ### From rstudio::conf(2020) <iframe src="http://files.zevross.com/workshops/spatial/slides/html/0-deck-list.html" width="100%" height="400px" data-external="1"></iframe> Some of this presentation comes from the above. --- class: inverse-orange center middle  # Vector versus raster data .footnote[Image from Zev Ross] --- # Vector data * points, lines, and polygons * Can easily include non-spatial data (e.g., number of people living within the polygon) -- * Come in the form of shapefiles (`.shp`), GeoJSON, or frequently in R packages. -- ### This is what we'll talk about almost exclusively today Tends to be the most relevant for social science research questions --- # Raster data .pull-left[ * Divide the space into a grid * Assign each square (pixel) a value ] .pull-right[  ] -- Common formats include images and are often used in satellite and remote sensing data. -- Can occasionally be helpful in social science data to show things like population density. --- # Example  .footnote[[source](https://www.nytimes.com/interactive/2021/02/16/us/winter-storm-texas-power-outage-map.html)] --- # Some of the #rspatial ecosystem * [{sf}](https://r-spatial.github.io/sf/index.html) * [{raster}](https://cran.r-project.org/web/packages/raster/raster.pdf) * [{ggplot2}](https://ggplot2.tidyverse.org) * [{tmap}](https://github.com/mtennekes/tmap) * [{mapview}](https://r-spatial.github.io/mapview/index.html) -- ### My goal Take you through at least a basic tour of each of these (minus {raster}, although we'll discuss raster data). --- # Some specific challenges with geospatial data * Coordinate reference systems and projections (we won't have much time for this) * List columns (specifically when working wtih {sf} objects) * Different geometry types (lines, points, polygons) * Vector versus raster * Data regularly stored in data "cubes" or "bricks" to represent, e.g., longitude, latitude, and elevation, or time series, or different colors --- # Getting spatial data * We'll only cover a few ways to do this -- * Purposefully United States centric -- * Generally reading shape files is not terrifically difficult. Reading in and manipulating raster data can be tricky at times. -- * Lots of organizations out there that publish spatial data, and a fair amount are available through R packages --- # Working with spatial data ### Two basic options * spatial`*`DataFrame (from the [{sp}](https://cran.r-project.org/web/packages/sp/sp.pdf) package) * sf data frame (simple features) + We'll mostly talk about this -- I can show you spatial`*`DataFrame outside the slides (it hung things up here). Generally, I'd stick with {sf}. Use `sf::st_as_sf` to convert `{sp}` to `{sf}` --- # {tigris} ``` r library(tigris) library(sf) *options(tigris_class = "sf") roads_laneco <- roads("OR", "Lane") roads_laneco ``` ``` ## Simple feature collection with 20382 features and 4 fields ## Geometry type: LINESTRING ## Dimension: XY ## Bounding box: xmin: -124.1536 ymin: 43.4376 xmax: -121.8131 ymax: 44.29001 ## Geodetic CRS: NAD83 ## # A tibble: 20,382 × 5 ## LINEARID FULLNAME RTTYP MTFCC geometry ## <chr> <chr> <chr> <chr> <LINESTRING [°]> ## 1 1102152610459 W Lone Oak Lp M S1640 (-123.1256 44.10108, -123.1… ## 2 110458664549 Village Plz Lp M S1400 (-123.1053 44.08658, -123.1… ## 3 1102217699746 Sheldon Village Lp M S1640 (-123.0723 44.07875, -123.0… ## 4 110458663505 Cottage Hts Lp M S1400 (-123.0522 43.7893, -123.05… ## 5 1102217699747 Sheldon Village Lp M S1640 (-123.0742 44.07891, -123.0… ## 6 110458661289 River Pointe Lp M S1400 (-123.0864 44.10306, -123.0… ## 7 1102152615811 Village Plz Lp M S1640 (-123.1051 44.08716, -123.1… ## 8 1102223141058 Carpenter Byp M S1400 (-123.3368 43.78013, -123.3… ## 9 1104486303973 State Hwy 126 Bus S S1200 (-123.0319 44.04427, -123.0… ## 10 1106092829173 State Hwy 126 Bus S S1200 (-123.1004 44.05214, -123.0… ## # ℹ 20,372 more rows ``` --- #I/O Let's say I want to write the file to disk. ``` r # from the sf library write_sf(roads_laneco, here::here("data", "roads_lane.shp")) ``` -- Then read it in later ``` r roads_laneco <- read_sf(here::here("data", "roads_lane.shp")) roads_laneco ``` ``` ## Simple feature collection with 20382 features and 4 fields ## Geometry type: LINESTRING ## Dimension: XY ## Bounding box: xmin: -124.1536 ymin: 43.4376 xmax: -121.8131 ymax: 44.29001 ## Geodetic CRS: NAD83 ## # A tibble: 20,382 × 5 ## LINEARID FULLNAME RTTYP MTFCC geometry ## <chr> <chr> <chr> <chr> <LINESTRING [°]> ## 1 1102152610459 W Lone Oak Lp M S1640 (-123.1256 44.10108, -123.1… ## 2 110458664549 Village Plz Lp M S1400 (-123.1053 44.08658, -123.1… ## 3 1102217699746 Sheldon Village Lp M S1640 (-123.0723 44.07875, -123.0… ## 4 110458663505 Cottage Hts Lp M S1400 (-123.0522 43.7893, -123.05… ## 5 1102217699747 Sheldon Village Lp M S1640 (-123.0742 44.07891, -123.0… ## 6 110458661289 River Pointe Lp M S1400 (-123.0864 44.10306, -123.0… ## 7 1102152615811 Village Plz Lp M S1640 (-123.1051 44.08716, -123.1… ## 8 1102223141058 Carpenter Byp M S1400 (-123.3368 43.78013, -123.3… ## 9 1104486303973 State Hwy 126 Bus S S1200 (-123.0319 44.04427, -123.0… ## 10 1106092829173 State Hwy 126 Bus S S1200 (-123.1004 44.05214, -123.0… ## # ℹ 20,372 more rows ``` --- # {sf} works with ggplot Use `ggplot2::geom_sf` ``` r ggplot(roads_laneco) + geom_sf(color = "gray60") ``` <!-- --> --- # Add water features ``` r lakes <- area_water("OR", "Lane") streams <- linear_water("OR", "Lane") ggplot() + geom_sf(data = lakes, fill = "#518FB5") + # Add lakes geom_sf(data = streams, color = "#518FB5") + # Add streams/drainage geom_sf(data = roads_laneco, color = "gray60") # add roads ``` Note - these functions are all from the [{tigris}](https://github.com/walkerke/tigris) package. --- <!-- --> --- # Quick aside ### Similar package `osmdata` * Specifically for street-level data. * We'll just use the boundry box functionality, but you can add many of the same things (and there are other packages that will provide you with boundary boxes) ``` r bb <- osmdata::getbb("Eugene") bb ``` ``` ## min max ## x -123.20876 -123.03059 ## y 43.98753 44.13227 ``` --- ``` r ggplot() + geom_sf(data = lakes, fill = "#518FB5") + # Add lakes geom_sf(data = streams, color = "#518FB5", size = 1.2) + # Add streams geom_sf(data = roads_laneco, color = "gray60") + # add roads coord_sf(xlim = bb[1, ], ylim = bb[2, ]) # limit range ``` --- class: center middle <!-- --> --- # Quickly ### Same thing but fully `osmdata` ``` r library(osmdata) library(colorspace) bb <- getbb("Eugene") roads <- bb %>% opq() %>% #overpass query add_osm_feature("highway") %>% # feature to add osmdata_sf() # Change it to sf water <- bb %>% opq() %>% add_osm_feature("water") %>% osmdata_sf() ``` --- # Use the data to plot ``` r ggplot() + geom_sf(data = water$osm_multipolygons, fill = "#518FB5", color = darken("#518FB5")) + geom_sf(data = water$osm_polygons, fill = "#518FB5", color = darken("#518FB5")) + geom_sf(data = water$osm_lines, color = darken("#518FB5")) + geom_sf(data = roads$osm_lines, color = "gray40", size = 0.2) + coord_sf(xlim = bb[1, ], ylim = bb[2, ], expand = FALSE) + labs(caption = "Eugene, OR") ``` --- class: center <!-- --> --- # Let's get some census data ### Note To do this, you need to first register an API key with the US Census, which you can do [here](https://api.census.gov/data/key_signup.html). Then use `census_api_key("YOUR API KEY")`. Alternatively, you can specify `CENSUS_API_KEY = "YOUR API KEY"` in **.Renviron**. You can do this by using `usethis::edit_r_environ()` --- # Getting the data ``` r library(tidycensus) # Find variable code # v <- load_variables(2019, "acs5") # View(v) census_vals <- get_acs( geography = "tract", state = "OR", variables = c(med_income = "B06011_001", ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) ``` ``` ## | | | 0% | |= | 1% | |== | 3% | |==== | 6% | |===== | 7% | |====== | 9% | |======= | 10% | |========= | 14% | |=========== | 16% | |============= | 20% | |============== | 21% | |================= | 26% | |================== | 28% | |=================== | 28% | |======================== | 36% | |============================== | 45% | |================================ | 49% | |=================================== | 53% | |======================================= | 59% | |========================================= | 62% | |=============================================== | 71% | |================================================== | 76% | |==================================================== | 78% | |====================================================== | 81% | |========================================================= | 86% | |=========================================================== | 90% | |=============================================================== | 96% | |==================================================================| 100% ``` --- # Look at the data ``` r census_vals ``` ``` ## Simple feature collection with 1668 features and 5 fields (with 12 geometries empty) ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## GEOID NAME variable ## 1 41031960302 Census Tract 9603.02, Jefferson County, Oregon med_income ## 2 41031960302 Census Tract 9603.02, Jefferson County, Oregon ed_attain ## 3 41057960100 Census Tract 9601, Tillamook County, Oregon med_income ## 4 41057960100 Census Tract 9601, Tillamook County, Oregon ed_attain ## 5 41015950100 Census Tract 9501, Curry County, Oregon med_income ## 6 41015950100 Census Tract 9501, Curry County, Oregon ed_attain ## 7 41039001902 Census Tract 19.02, Lane County, Oregon med_income ## 8 41039001902 Census Tract 19.02, Lane County, Oregon ed_attain ## 9 41029000300 Census Tract 3, Jackson County, Oregon med_income ## 10 41029000300 Census Tract 3, Jackson County, Oregon ed_attain ## estimate moe geometry ## 1 30061 2953 MULTIPOLYGON (((-121.8495 4... ## 2 3011 228 MULTIPOLYGON (((-121.8495 4... ## 3 30243 3888 MULTIPOLYGON (((-123.983 45... ## 4 2707 245 MULTIPOLYGON (((-123.983 45... ## 5 18989 3531 MULTIPOLYGON (((-124.5646 4... ## 6 2337 295 MULTIPOLYGON (((-124.5646 4... ## 7 24874 2893 MULTIPOLYGON (((-122.9855 4... ## 8 4003 368 MULTIPOLYGON (((-122.9855 4... ## 9 25000 3432 MULTIPOLYGON (((-122.9079 4... ## 10 4331 366 MULTIPOLYGON (((-122.9079 4... ``` --- # Remove missing geometry rows * Tidycensus is (currently) bringing in some rows with missing geometries * This is not a big deal for ggplot, but is for other plotting systems * Let's remove those rows ``` r census_vals <- census_vals[!st_is_empty(census_vals$geometry), , drop = FALSE] ``` --- # Plot it ``` r library(colorspace) ggplot(census_vals) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging("Blue-Red 3", rev = TRUE) + scale_color_continuous_diverging("Blue-Red 3", rev = TRUE) ``` --- # hmm... <!-- --> --- # Try again ``` r library(colorspace) *income <- filter(census_vals, variable == "med_income") income_plot <- ggplot(income) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(income$estimate, na.rm = TRUE) ) + scale_color_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(income$estimate, na.rm = TRUE) ) + theme(legend.position = "bottom", legend.key.width = unit(2, "cm")) ``` --- ``` r income_plot ``` <!-- --> --- # Same thing for education ``` r *ed <- filter(census_vals, variable == "ed_attain") ed_plot <- ggplot(ed) + geom_sf(aes(fill = estimate, color = estimate)) + facet_wrap(~variable) + guides(color = "none") + scale_fill_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(ed$estimate, na.rm = TRUE) ) + scale_color_continuous_diverging( "Blue-Red 3", rev = TRUE, * mid = mean(ed$estimate, na.rm = TRUE) ) + theme(legend.position = "bottom", legend.key.width = unit(2, "cm")) ``` --- ``` r ed_plot ``` <!-- --> --- # Put them together ``` r gridExtra::grid.arrange(income_plot, ed_plot, ncol = 2) ``` <!-- --> --- class: inverse-blue middle # Bivariate color scales --- background-image: url(https://timogrossenbacher.ch/wp-content/uploads/2019/04/bm-thematic-bivariate-map-with-legend-1-2.png) background-size: cover --- # How? There are a few different ways. Here's one: * Break continuous variable into categorical values * Assign each combination of values between categorical vars a color * Make sure the combinations of the colors make sense --  .footnote[gif from [Joshua Stevens](https://www.joshuastevens.net/cartography/make-a-bivariate-choropleth-map/)] --- # Do it Note - this will be fairly quick. I'm not expecting you to know how to do this, but I want to show you the idea and give you the breadcrumbs for the code you may need. -- ### First - move it to wider ``` r wider <- get_acs( geography = "tract", state = "OR", variables = c(med_income = "B06011_001", ed_attain = "B15003_001"), year = 2019, geometry = TRUE, * output = "wide" ) # remove missing geometry rows wider <- wider[!st_is_empty(wider$geometry), , drop = FALSE] ``` --- # Find the quartiles ``` r ed_quartiles <- quantile( wider$ed_attainE, probs = seq(0, 1, length.out = 4), na.rm = TRUE ) inc_quartiles <- quantile( wider$med_incomeE, probs = seq(0, 1, length.out = 4), na.rm = TRUE ) ed_quartiles ``` ``` ## 0% 33.33333% 66.66667% 100% ## 0.000 2715.000 3949.333 10245.000 ``` ``` r inc_quartiles ``` ``` ## 0% 33.33333% 66.66667% 100% ## 7449.00 26718.33 34375.00 82375.00 ``` --- # Create the cut variable ``` r wider <- wider %>% mutate(cat_ed = cut(ed_attainE, ed_quartiles), cat_inc = cut(med_incomeE, inc_quartiles)) wider %>% select(starts_with("cat")) ``` ``` ## Simple feature collection with 828 features and 2 fields ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## cat_ed cat_inc geometry ## 1 (2.71e+03,3.95e+03] (2.67e+04,3.44e+04] MULTIPOLYGON (((-121.8495 4... ## 2 (0,2.71e+03] (2.67e+04,3.44e+04] MULTIPOLYGON (((-123.983 45... ## 3 (0,2.71e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-124.5646 4... ## 4 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] MULTIPOLYGON (((-122.9855 4... ## 5 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] MULTIPOLYGON (((-122.9079 4... ## 6 (2.71e+03,3.95e+03] (3.44e+04,8.24e+04] MULTIPOLYGON (((-123.5016 4... ## 7 (0,2.71e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.0927 4... ## 8 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-120.8811 4... ## 9 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.5093 4... ## 10 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] MULTIPOLYGON (((-123.8179 4... ``` --- # Set palette ``` r # First drop geo column pal <- st_drop_geometry(wider) %>% count(cat_ed, cat_inc) %>% arrange(cat_ed, cat_inc) %>% drop_na(cat_ed, cat_inc) %>% mutate(pal = c("#F3F3F3", "#C3F1D5", "#8BE3AF", "#EBC5DD", "#C3C5D5", "#8BC5AF", "#E7A3D1", "#C3A3D1", "#8BA3AE")) pal ``` ``` ## cat_ed cat_inc n pal ## 1 (0,2.71e+03] (7.45e+03,2.67e+04] 116 #F3F3F3 ## 2 (0,2.71e+03] (2.67e+04,3.44e+04] 85 #C3F1D5 ## 3 (0,2.71e+03] (3.44e+04,8.24e+04] 70 #8BE3AF ## 4 (2.71e+03,3.95e+03] (7.45e+03,2.67e+04] 87 #EBC5DD ## 5 (2.71e+03,3.95e+03] (2.67e+04,3.44e+04] 97 #C3C5D5 ## 6 (2.71e+03,3.95e+03] (3.44e+04,8.24e+04] 92 #8BC5AF ## 7 (3.95e+03,1.02e+04] (7.45e+03,2.67e+04] 71 #E7A3D1 ## 8 (3.95e+03,1.02e+04] (2.67e+04,3.44e+04] 92 #C3A3D1 ## 9 (3.95e+03,1.02e+04] (3.44e+04,8.24e+04] 113 #8BA3AE ``` --- # Join & plot ``` r bivar_map <- left_join(wider, pal) %>% ggplot() + geom_sf(aes(fill = pal, color = pal)) + guides(fill = "none", color = "none") + scale_fill_identity() + scale_color_identity() ``` --- class: center middle <!-- --> --- # Add in legend ### First create it ``` r leg <- ggplot(pal, aes(cat_ed, cat_inc)) + geom_tile(aes(fill = pal)) + scale_fill_identity() + coord_fixed() + labs(x = expression("Higher education" %->% ""), y = expression("Higher income" %->% "")) + theme(axis.text = element_blank(), axis.title = element_text(size = 12)) leg ``` <!-- --> --- # Put together ``` r library(cowplot) ggdraw() + draw_plot(bivar_map + theme_void(), 0.1, 0.1, 1, 1) + draw_plot(leg, -0.05, 0, 0.3, 0.3) ``` Coordinates are mostly guess/check depending on aspect ratio --- <!-- --> --- class: inverse-orange middle # {tmap} ### Back to just one variable I mostly use `ggplot()`, but the **{tmap}** package is really powerful and the syntax is pretty straightforward, so let's have a quick overview. --- # Education map with [{tmap}](https://cran.r-project.org/web/packages/tmap/vignettes/tmap-getstarted.html). ``` r library(tmap) tm_shape(wider) + tm_polygons("ed_attainE") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Facet ``` r tm_shape(census_vals) + tm_polygons("estimate") + tm_facets("variable") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Change colors ``` r tm_shape(wider) + tm_polygons("ed_attainE", * palette = "magma", * border.col = "gray90", * lwd = 0.1) + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Continuous legend ``` r tm_shape(wider) + tm_polygons("ed_attainE", style = "cont") + tm_layout(legend.outside = TRUE) ``` <!-- --> --- # Add text * First, let's get data at the county level, instead of census tract level ``` r cnty <- get_acs( geography = "county", state = "OR", variables = c(ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) ``` ``` ## | | | 0% | |= | 2% | |== | 3% | |== | 4% | |=== | 5% | |==== | 6% | |===== | 7% | |===== | 8% | |====== | 9% | |======= | 10% | |======== | 12% | |======== | 13% | |========== | 14% | |========== | 15% | |========== | 16% | |=========== | 17% | |============= | 20% | |============== | 21% | |=============== | 23% | |================= | 26% | |================== | 27% | |=================== | 29% | |==================== | 30% | |==================== | 31% | |===================== | 32% | |====================== | 34% | |======================= | 35% | |======================== | 36% | |========================= | 38% | |========================== | 39% | |========================== | 40% | |=========================== | 41% | |============================ | 42% | |============================= | 44% | |============================== | 46% | |=============================== | 48% | |================================ | 49% | |================================= | 50% | |================================== | 52% | |=================================== | 53% | |==================================== | 54% | |===================================== | 55% | |===================================== | 57% | |====================================== | 58% | |======================================= | 58% | |======================================= | 59% | |======================================== | 60% | |========================================= | 62% | |========================================== | 63% | |========================================== | 64% | |============================================== | 70% | |=============================================== | 71% | |=============================================== | 72% | |================================================= | 74% | |================================================= | 75% | |=================================================== | 77% | |====================================================== | 81% | |======================================================= | 83% | |======================================================== | 85% | |========================================================= | 87% | |========================================================== | 88% | |============================================================ | 91% | |============================================================= | 92% | |============================================================== | 93% | |=============================================================== | 96% | |==================================================================| 100% ``` --- ``` r cnty ``` ``` ## Simple feature collection with 36 features and 5 fields ## Geometry type: MULTIPOLYGON ## Dimension: XY ## Bounding box: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204 ## Geodetic CRS: NAD83 ## First 10 features: ## GEOID NAME variable estimate moe ## 1 41017 Deschutes County, Oregon ed_attain 135615 192 ## 2 41003 Benton County, Oregon ed_attain 55359 143 ## 3 41015 Curry County, Oregon ed_attain 18304 139 ## 4 41061 Union County, Oregon ed_attain 17539 78 ## 5 41055 Sherman County, Oregon ed_attain 1251 84 ## 6 41051 Multnomah County, Oregon ed_attain 587290 134 ## 7 41007 Clatsop County, Oregon ed_attain 28475 165 ## 8 41033 Josephine County, Oregon ed_attain 63802 148 ## 9 41031 Jefferson County, Oregon ed_attain 16197 24 ## 10 41039 Lane County, Oregon ed_attain 256373 147 ## geometry ## 1 MULTIPOLYGON (((-122.0019 4... ## 2 MULTIPOLYGON (((-123.8167 4... ## 3 MULTIPOLYGON (((-124.3239 4... ## 4 MULTIPOLYGON (((-118.6978 4... ## 5 MULTIPOLYGON (((-121.0312 4... ## 6 MULTIPOLYGON (((-122.9292 4... ## 7 MULTIPOLYGON (((-123.5989 4... ## 8 MULTIPOLYGON (((-124.042 42... ## 9 MULTIPOLYGON (((-121.8495 4... ## 10 MULTIPOLYGON (((-124.1503 4... ``` --- # Estimate polygon centroid ``` r centroids <- st_centroid(cnty) ``` -- ### Extract just county name ``` r centroids <- centroids %>% mutate(county = str_replace_all(NAME, " County, Oregon", "")) ``` --- # Plot ``` r tm_shape(cnty) + tm_polygons("estimate", style = "cont") + tm_shape(centroids) + tm_text("county", size = 0.5) + tm_layout(legend.outside = TRUE) ``` <!-- --> -- Doesn't work for me on the slides. Not sure why, but should work for you locally. --- # Add raster elevation data ``` r states <- get_acs( "state", variables = c(ed_attain = "B15003_001"), year = 2019, geometry = TRUE ) or <- filter(states, NAME == "Oregon") # convert to spatial data frame #sp <- as(or, "Spatial") # use elevatr library to pull data library(elevatr) or_elev <- get_elev_raster(or, z = 9) lane_elev <- get_elev_raster(or, z = 9) ``` --- # Plot ``` r tm_shape(or_elev) + tm_raster(midpoint = NA, style = "cont") + tm_layout(legend.outside = TRUE) + tm_shape(cnty) + tm_borders(col = "gray60") ``` <!-- --> --- # Add custom palette ``` r tm_shape(or_elev) + tm_raster(midpoint = NA, style = "cont", palette = c("#E2FCFF", "#83A9CE", "#485C6E", "#181818", "#5C5B3E", "#AAA971", "#FCFCD3", "#ffffff")) + tm_layout(legend.outside = TRUE) + tm_shape(cnty) + tm_borders(col = "gray60") ``` --- class: full-size-fig <!-- --> --- # You can do some amazing things! <!-- --> --- # Create interactive maps Just change run `tmap_mode("view)` then run the same code as before ``` r tmap_mode("view") tm_shape(cnty) + tm_polygons("estimate") + tm_shape(centroids) + tm_text("county", size = 0.5) ``` ---
--- # mapview * Really quick easy interactive maps ``` r library(mapview) mapview(cnty) ```
--- ``` r mapview(cnty, zcol = "estimate") ```
--- ``` r mapview(cnty, zcol = "estimate", popup = leafpop::popupTable(cnty, zcol = c("NAME", "estimate"))) ```
--- class: inverse-blue center middle # A few other things of note --- # statebins ``` r library(statebins) statebins(states, state_col = "NAME", value_col = "estimate") + theme_void() ``` <!-- --> --- # Cartograms ``` r library(cartogram) or_county_pop <- get_acs( geography = "county", state = "OR", variables = "B01001E_001", year = 2018, geometry = TRUE ) ``` ``` ## | | | 0% | | | 1% | |= | 1% | |= | 2% | |== | 4% | |=== | 4% | |==== | 7% | |===== | 8% | |====== | 8% | |====== | 9% | |======= | 11% | |======== | 12% | |========= | 13% | |========== | 15% | |============ | 18% | |============ | 19% | |============== | 21% | |================ | 24% | |================ | 25% | |=================== | 28% | |=================== | 29% | |===================== | 31% | |====================== | 33% | |======================= | 35% | |========================= | 37% | |========================== | 39% | |=========================== | 42% | |============================ | 43% | |============================= | 43% | |============================== | 45% | |=============================== | 47% | |================================= | 50% | |================================== | 52% | |=================================== | 53% | |========================================= | 62% | |========================================= | 63% | |========================================== | 63% | |========================================== | 64% | |=========================================== | 65% | |=========================================== | 66% | |============================================ | 66% | |============================================= | 68% | |============================================== | 70% | |================================================ | 72% | |================================================= | 74% | |================================================= | 75% | |=================================================== | 77% | |=================================================== | 78% | |==================================================== | 79% | |===================================================== | 80% | |====================================================== | 82% | |======================================================= | 83% | |======================================================= | 84% | |======================================================== | 86% | |=========================================================== | 89% | |============================================================ | 90% | |============================================================= | 92% | |============================================================== | 94% | |=============================================================== | 95% | |================================================================ | 97% | |==================================================================| 100% ``` ``` r # Set projection or_county_pop <- st_transform(or_county_pop, crs = 2992) # found the CRS here: https://www.oregon.gov/geo/pages/projections.aspx carto_counties <- cartogram_cont(or_county_pop, "estimate") ``` --- # Compare .pull-left[ ``` r ggplot(or_county_pop) + geom_sf(fill = "#BCD8EB") ``` <!-- --> ] .pull-right[ ``` r ggplot(carto_counties) + geom_sf(fill = "#D5FFFA") ``` <!-- --> ] --- # State ``` r state_pop <- get_acs( geography = "state", variables = "B00001_001", year = 2018, geometry = TRUE ) # Set projection state_pop <- st_transform(state_pop, crs = 2163) # found the CRS here: https://epsg.io/transform#s_srs=3969&t_srs=4326 carto_states <- cartogram_cont(state_pop, "estimate") ``` --- # Cartogram of USA by population ``` r ggplot(carto_states) + geom_sf() ``` <!-- --> --- # Last note You may or may not like cartograms. -- Just be careful not to lie with maps.  --- class: inverse-red # Final Project - Let's look at the rubric again! --- class: inverse-green # Next time * Wrap up maps and loose ends with HTML * More time to work on final project and peer-review of other's visualization